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ABSTRACT 

We report on a general architecture for creating 
knowledge-based medical training systems to teach 
diagnostic classification problem solving. The approach is 
informed by our previous work describing the development 
of expertise in classification problem solving in Pathology. 
The architecture envelops the traditional Intelligent 
Tutoring System design within the Unified Problem-solving 
Method description Language (UPML) architecture, 
supporting component modularity and reuse. Based on the 
domain ontology, domain task ontology and case data, the 
abstract problem-solving methods of the expert model 
create a dynamic solution graph. Student interaction with 
the solution graph is filtered through an instructional layer, 
which is created by a second set of abstract problem-solving 
methods and pedagogic ontologies, in response to the 
current state of the student model. We outline the 
advantages and limitations of this general approach, and 
describe it’s implementation in SlideTutor – a developing 
Intelligent Tutoring System in Dermatopathology.  
 

INTRODUCTION 
 
An important potential application of knowledge-based 
systems in Medical Informatics is the training of future 
medical professionals. Despite significant work in medical 
knowledge engineering and decision-support, advances in 
these areas are rarely applied in computer-based medical 
education. One potential reason is the absence of general 
architectures or frameworks for incorporating medical 
knowledge bases in larger instructional systems. Just as 
domain knowledge is necessary, but not sufficient, for 
competent teaching, domain knowledge systems are 
necessary, but not sufficient for competent, knowledge-
based teaching systems. We outline a general architecture 
for development of knowledge-based medical training 
systems, and describe the application of this architecture in 
SlideTutor 1, a developing training system in 
Dermatopathology. The empirical foundation for SlideTutor 
is our ongoing cognitive analysis of visual diagnostic 
classification 2. The approach incorporates aspects of 
intelligent tutoring system (ITS) design 3, as well as 
methods of knowledge modeling 4, establishing a general 
architecture for instruction in classification problem solving.  
 

BACKGROUND 
 

ITS are adaptive, instructional systems that seek to emulate 
the well known benefits of one-on-one tutoring when 
compared to other instructional methods. Many ITS have 
been shown to improve student performance beyond 
classroom instruction, and close to what can be achieved 

with a human tutor 5. Model tracing ITS (MT-ITS) are a 
subtype of ITS that guide the student through the problem 
space, correcting errors in the intermediate steps and 
offering hints specific to the current problem state 6. 
Dialogue systems are another kind of ITS that provide an 
ongoing conversation about problem-solving, in which the 
dialogue may be student-initiated, system-initiated, or 
mixed-initiative. Any ITS typically includes four basic 
components: expert module, student model, pedagogic 
knowledge and interface 3. The expert module provides a 
model of expert performance against which the student is 
measured. Across multiple problems or cases, ITS 
dynamically model the student. Assessment of the student 
state may influence the system’s pedagogic decisions about 
tutorial strategy, case selection and curriculum sequencing. 
 
Only a handful of medical ITS have been developed 7-10. Of 
these, the GUIDON project 10 is most directly relevant. 
GUIDON used 200 tutorial rules as well as MYCIN’s 400 
domain rules to teach medical students to learn to identify 
the most likely causative organism in cases of infectious 
meningitis and bacteremia. Before a case was presented, 
consultation with MYCIN was used to generate an 
AND/OR tree representing Goals (OR nodes) and Rules 
(AND nodes). GUIDON then used the AND/OR tree to 
structure the discussion with the student. Interaction used a 
mixed-initiative method of dialogue. One of the central 
advances of GUIDON was the separation of domain 
knowledge from pedagogic knowledge. However, by 
current standards, the scope of domain knowledge was quite 
small. Consequently, GUIDON’s feedback was only 
relevant to a very small part of the domain.  
 

GENERAL ARCHITECTURE 
 
The central assumption in our architecture is that human 
cognition is modeled by production rule systems. This 
assumption is based on a framework of human cognition 
that has accumulated abundant empirical validation 11. The 
commitment to a rule-based expert model is needed to 
achieve a teaching system that is congruent to human 
cognition and capable of providing rapid student feedback. 
However, the rule system architecture can be limiting. Like 
GUIDON, almost all existing ITS use production rules that 
are specific to the domain knowledge they teach. In abstract, 
procedural, and tightly circumscribed domains such as 
Algebra, Physics, or Programming this poses no specific 
disadvantages. In contrast, development of medical tutoring 
systems requires highly complex, large declarative 
knowledge structures, which may evolve over time. To 
address this requirement, we utilize a common knowledge 
engineering method - abstract problem solving methods and 
ontologies. The architecture we propose (Figure 1) is 



consistent with the constraints of the UPML Component 
Model 12, resulting in an ITS architecture that is modular 
and re-usable, but also cognitively plausible. 
 
The expert model is composed of domain model ontology, 
domain task ontology, and abstract problem solving 
methods. The domain model ontology represents the domain 
knowledge used to solve problems. The domain task 
ontology represents the goals of the problem-solving 
process. In combination with the case data, the abstract 
problem-solving methods create a dynamic solution graph 
which student actions are tested against. The pedagogic 
model is composed of a separate set of component 
ontologies and problem-solving methods including a 
pedagogic ontology, pedagogic task ontology and abstract 
problem solving methods. The pedagogic model ontology 
represents the pedagogic knowledge used to teach problem-
solving. The pedagogic task ontology represents the goals of 
the instructional process. In combination with data 
reflecting the current state of the student model, the 
pedagogic model creates a highly flexible and context -
specific instructional layer between the student interface and 
the dynamic solution graph. 
 
Advantages of this architecture include: (1) Much larger 
expert models are possible. Students have a tendency to 
wander far afield in any problem space. Large models 
enable targeted feedback that guides students back to the 
solution path. (2) Many diagnostic medical problems have 
deep, structural task similarities – searching, identification, 
hypothesis formation and testing, etc. A general architecture 
can be reused with many domain ontologies, pedagogic 
models, or student interfaces. (3) Knowledge in the 
ontologies can be easily modified or expanded without 
altering the underlying code. 
 

IMPLEMENTATION IN SLIDETUTOR 
 
SlideTutor 1 is a developing medical ITS, that uses this 
general architecture. The expert model of SlideTutor is 
composed of a domain task ontology instantiated for visual 
classification, a domain model instantiated in Inflammatory  

Skin Diseases, and the abstract problem solving methods for 
generating the dynamic solution graph. The domain task 
ontology, and abstract problem solving methods for the 
system have been completed. The domain model is 
instantiated for one of eleven algorithms in Inflammatory 
Skin Diseases 13. On the pedagogic side, we have created 
and partially instantiated the pedagogic model, and built an 
initial set of the abstract problem-solving methods for 
creating the instructional layer. But flexibility in the 
instructional layer requires a functional student modeling 
system, which is not yet implemented. Therefore, we are 
currently using a default set of pedagogic goals.  
 
SlideTutor is implemented as a client-server application in 
the Java and Jess programming languages. Ontologies are 
developed with Protégé-2000 (protege.stanford.edu) and 
problem-solving methods are written and executed in Jess – 
a Java production rule system (herzberg.ca.sandia.gov/jess/). 
Our Virtual Microscope system extends a commercial 
software package for web-based image panning and 
zooming (www.xippix.com). A prototype student interface 
for use with the system can be downloaded from the project 
homepage at (slidetutor.upmc.edu) using Java Web Start. 
(java.sun.com/ products/javawebstart/). The student interface 
combines a virtual slide viewer and diagrammatic reasoning 
interface (Figure 2).  Users can search an example whole 
slide image using a virtual microscope, point to features of 
importance in the image, and construct a graphical argument 
for one or more diagnoses. Each user step in the interface is 
evaluated against SlideTutor’s expert model, and 
appropriate feedback is generated. For programming and 
debugging the dynamic solution graph, we extended JGraph 
(www.jgraph.org) to provide a visualization of the evolving 
problem state (Figure 3). 
 

KNOWLEDGE REPRESENTATION 
 

SlideTutor is currently instantiated in the sub-domain of 
Inflammatory Diseases of Skin, an area of the doma in that is 
highly algorithmic. Instances are specific to one of the 
eleven diagnostic algorithms 13– Subepidermal Vesicular 
Dermatitis. Further work is planned to represent disease
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Figure 1. General Architecture for Intelligent Tutoring of Classification Problem Solving



Figure 2. Current node-and-arc reasoning interface. 
 

entities in the remaining ten algorithms. Details of 
SlideTutor’s expert model knowledge representation have 
been previously described 1. Briefly, to generate the 
dynamic solution graph, abstract problem solving methods 
are applied to three sets of working memory elements 
(frames): domain model (dermatopathology knowledge-
base), case data (slide representation for a given case), and 
domain task model  (visual classification task structure 
indicating the sequence of possible task actions).  
 
Domain Model. The class concepts and relationships of the 
domain model ontology are general, and apply widely 
throughout Pathology and other areas of medicine in which 
classification is feature-based. Our representation slightly 
extends the ontology for classification problem solving 
described by Motta et al 14. Diseases are hierarchically 
represented.  Any disease may belong to more than one 
class (multiple inheritance). Diseases have any number of 
FEATURE_SPECIFICATION instances representing the 
distinct histologic patterns that are to be learned, which are 
built up from features, attributes, and values. Instances of 
FEATURE represent distinct perceptual primitives of visual 
entities (such as blister) that form the “atoms” of visual 
feature recognition. Instances of the class 
ATTRIBUTE_VALUE_LIST are composed of sets of 
ATTURBUTES and VALUES, and represent the additional 
cognitive steps for refining these features (such as the 
distinction of a blister’s location relative to the epidermis as 
sub-epidermal or intra-epidermal).  
 
Case Data. Each instance of SLIDE represents the location 
and content of each lesion and feature encoded in a single 
slide. ATTRIBUTE, VALUE and FEATURE are the same 
classes used in the Knowledge-Base. Instances of 
FEATURE and unique sets of attributes and values are 
represented as instances of class OBSERVABLE. Instances 
of the class OBSERVABLE model values specific to the 
given case as opposed to the attribute ranges of 
FEATURE_SPECIFICATIONS. SLIDE representations are 
created using a Slide Authoring Tool.  
 
Domain Task Model. The domain task model represents 
goals to be achieved including (1) finding a focal lesion, (2) 

identifying visual features, (3) mo difying features with 
attributes and values, (4) asserting a hypothesis, (5) linking 
evidence to hypothesis, (6) setting a goal to find a feature 
that distinguishes between multiple hypotheses, and (7) 
making a diagnosis. Instantiation of the domain task model 
occurs at run-time, dependent on the case and student, and 
will ultimately be subject to decisions of the pedagogic 
model. Goals contain priorities that will ultimately be set by 
the pedagogic model. 

 
DYNAMIC SOLUTION GRAPH 

 
The dynamic solution graph (DSG) is a directed acyclic 
graph, designed to generate valid paths through the problem 
space, based on the case data, domain model, and domain 
task model. A graph representation supports many useful 
features for a teaching system. It enables both forward 
reasoning and backwards reasoning, and can express 
negated nodes as well as negated relationships. The DSG is 
capable of generating the entire space, but any individual 
state of the DSG indicates only the current problem state 
and all valid next -steps. Any valid next -step events 
propagate iteratively through the abstract nodes until all the 
current pedagogic goal requirements are met. The actions 
that occur in response to a triggered event alter the solution 
graph, specific to the type of goal node. This function is 
encapsulated in the unique behavior structures for each 
different type of node. The behavior of DSG is dependent 
on the order of input events applied to the current problem 
state, therefore forward and backwards reasoning generate 
different graphs. 
 
Our implementation uses cluster nodes to represent the 
superset of nodes of the same type. Arcs between clusters 
and other nodes express an integrated relation between the 
state of the cluster’s elements and nodes outside the cluster. 
For example, a single piece of evidence can be associated 
with different FEATURE_SPECIFICATIONS of the same 
DISEASE. Thus, the evidence cluster contains all potential 
FEATURE_SPECIFICATIONS, as the problem advances 
towards a solution state. At the conclusion of successful 
problem-solving, only one FEATURE_SPECIFICATION 
remains for each valid disease hypothesis. Furthermore, 
evidence clusters allow two potential pedagogic strategies 
for feedback about evidence-hypothesis relationships. The 
system can permit hypothesis formation based on a single 
piece of evidence, or require that a hypothesis be consistent 
with all accumulated evidence.  
 
Thus, the decision to use a dynamic graph was based on 
multiple factors. The DSG (1) limits the size of working 
memory for a solution space that can be extremely large, (2) 
allows disambiguation as the problem state changes and (3) 
provides flexibility in pedagogic feedback as well as the 
potential to completely change pedagogic strategy based on 
individual student actions.  
 
For programming and debugging purposes, we extended 
JGraph to “walk” the dynamic graph (Figure 3). The DSG 
debugger can be initialized to any problem state. Clicking  
 



 
Figure 3. Visualization of DSG with DSG debugger. 

 
on nodes propagates events and updates the graph to the 
next problem state, simulating student actions. 
 

INSTRUCTIONAL LAYER 
 

The purpose of the instructional layer is to provide feedback 
to students as they solve problems. In SlideTutor, the 
instructional layer is implemented as a model-tracer 6 – a 
system that provides step-by-step feedback and hints based 
on it’s expert model. However, the modularity of our design 
permits the same expert model to be used with any 
instructional layer (for example a dialogue system or a 
critiquing system) as well as any interface.  
 
Our model-tracer matches student actions against the DSG 
and generates an appropriate response. When student 
actions reproduce reasonable paths through the problem-
space, the state of the DSG advances with each correct 
action , but the instructional layer takes no action. When the 
student takes an incorrect action, the instructional layer 
analyzes the student action and determines which “bug” 
message to return to the student. When the student is unsure 
what to do and asks for a hint, the instructional layer queries 
the DSG to determine the valid next -step with the highest 
priority.  
 
Bug and Hint text messages are instances of template hints 
from the Pedagogic Knowledge Base, into which values 
specific to the student action and current problem state are 
inserted. In addition to presenting context -specific text, bug 
and hint messages may also direct the student’s visual 
attention  - for example by moving the viewer to the area 
with the lesion, or annotating a particular feature on the 
whole slide. Hint messages are hierarchical. Early hints 
offer general advice, but subsequent requests return specific 
instructions about appropriate next actions.  
 
The current implementation of the instructional layer 
includes only the functionality required to provide the three 
basic model-tracing facilities described above. In future 
work, we will significantly expand the role of the 
instructional layer, develop (or modify existing) general 

classes for teaching, create instances appropriate to the 
teaching of diagnostic classification problem solving, and 
write additional abstract problem solving methods that 
configure the instructional layer specific to the current state 
of the student model. We intend to create an instructional 
layer that can responsively adapt to changing student needs, 
by changing the pedagogic approach (e.g. to a case based 
approach), altering the interface (e.g. to an algorithmic 
interface), changing hint modalities (e.g. when students 
respond better to visual or to textual hints) and permitting 
more advanced student behaviors (e.g. step-skipping, 
incomplete articulation).  
 

EXAMPLE INTERACTION 
 
To clarify the functions and relationships of these 
components, we trace the interaction between a hypothetical 
student and SlideTutor for three steps in a problem – a 
correct action , an incorrect action and a hint request. A case 
of Dermatitis Herpetiformis is presented to the student as an 
unknown. At the beginning of the session, instances from 
the Dermatopathology Knowledge Base and the Slide 
Representation of that case are asserted as Jess facts. The 
problem solving methods of the expert model, create a new 
set of Jess facts based on the Jess templates (classes) 
defined in the Visual Classification Task Model, and 
construct a graph of the present problem state and valid-
next -steps. As the problem starts, the only valid-next -step is 
to find the area of the slide with the lesion on it. Our student 
successfully traverses this area with the virtual microscope. 
The instructional layer takes no action. The system registers 
this correct action and problem-solving methods generate 
the next state of the solution graph. The new valid-next -
steps for this novice student include only the identification 
of evidence in the slide, because the pedagogic model 
requires complete articulation of evidence.  
 
The student finds an area of discontinuity between the 
epithelium and the dermis, points to it in the image, and 
selects “epidermal necrosis” as the feature. This step is an 
incorrect action. The DSG state does not change. The 
instructional layer determines that the location the student 
selected in the image is associated with feature “blister” – 
not “epithelial necrosis” and responds with the message: 
“There is an important feature in that area but it’s not 
<epithelial necrosis>” by inserting the current user input (in 
brackets) into the specific bug message for this situation. 
The template text of this bug message originates from the 
pedagogic knowledge base. The system also indicates the 
error by creating a finding icon in the diagrammatic 
reasoning space, which is marked in red. The student cannot 
do anything with this icon except to delete it.  
 
The student does not know what to do and asks for a hint. 
The DSG state does not change. The instructional layer 
responds by mo ving the viewer to the correct magnification 
and field and indicating that this is the area where the 
feature is found. Additional hint requests generate: (1) a text 
message there is an epidermal change, (2) a text message 
indicating that this is the feature in question accompanied by 
annotation of the image, and eventually (3) a text message 



telling the student that this is a Blister. Once the Blister icon 
has been created, the student must also specify that the 
Blister has a location that is sub-epidermal (attribute-value) 
because the distinction of sub-epidermal from intra-
epidermal is critical in this classification algorithm. 
 
The current default state of the pedagogic model requires 
that any hypothesis must be preceded by at least one piece 
of evidence. Therefore, the next DSG state will be the first 
time that possible hypotheses based on that evidence appear 
as valid-next -steps in the graph. The evidence cluster 
supports hypotheses that match all of the evidence. So hints 
at this point can be directed towards the best hypotheses 
(supported by the cluster), even though the system may 
accept any hypothesis that is consistent with one piece of 
found evidence. Once a hypothesis is created (Figure 2), the 
solution graph contains nodes for all valid support and 
refute actions that link found-evidence to hypotheses 
(Figure 3). Additionally, it contains every 
feature/attribute/value combination valid for any 
FEATURE_SPECIFICATION of that hypothesis. This 
models the “backwards reasoning” component. In this way, 
the system can eventually provide feedback that reinforces 
efforts to find these features, especially those that 
distinguish among the current hypotheses. 
  

LIMITATIONS 
 
One of the primary limitations of the architecture we 
propose is that is not well suited for domains where there 
are no clear prototypical instances or schemas. All possible 
combinations of the evidence cannot be modeled in a system 
such as this. One could argue that in a teaching system - 
they should not be. Part of good teaching is choosing cases 
that are prototypical or that represent common exceptions. 
The goal is to help students learn basic classification skills 
in practice, giving them a framework into which subsequent 
exceptions can be incorporated.  
 

CONCLUSIONS 
 
We have developed a general set of resources including 
domain and task ontologies, and abstract problem-solving 
methods needed for the expert model of an Intelligent 
Tutoring System in Dermatopathology. The architecture we 
describe is general, modular and flexible, and could be 
applied to virtually any feature-based classification task in 
Medicine. Modifications of this architecture could be used 
for instruction in other medical tasks such as patient 
management. The potential reuse of existing resources (e.g. 
clinical guidelines encoded in GLIF) offers significant 
advantages to the development of knowledge-based 
educational systems. By elaborating, expanding and further 
generalizing this architecture, it may be possible to develop 
tutoring frameworks (shells) specific to medical tasks. A 
medical tutoring framework could implement the 
architecture described, using existing resources like Protégé-

2000, to support rapid development of intelligent medical 
training systems. Use of emergent ideas from the UPML 12 
project may one day permit tutoring agents that operate over 
the distributed knowledge base of the Semantic Web. 
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